Formant frequency tracking using Gaussian mixtures with maximum a posteriori adaptation

نویسندگان

  • Jonathan C. Kim
  • Hrishikesh Rao
  • Mark A. Clements
چکیده

We present a novel method for estimating formant frequencies by fitting Gaussian mixtures to discrete Fourier Transform (DFT) magnitude spectra. The method first estimates the Gaussian parameters for a sequence of wideband spectra using the Expectation-Maximization (EM) algorithm. It then refines the parameters by using maximum a posteriori (MAP) adaptation. The work was evaluated using manually labeled ground truth data with 516 utterances and comparing results both with PRAAT’s formant tracking algorithm in various noisy environments and one other state-of-the-art method. We obtained statistically significant improvements in the relative errors for the first three formants over all phonetic classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formant Prediction from MFCC Vectors

This work proposes a novel method of predicting formant frequencies from a stream of mel-frequency cepstral coefficients (MFCC) feature vectors. Prediction is based on modelling the joint density of MFCC vectors and formant vectors using a Gaussian mixture model (GMM). Using this GMM and an input MFCC vector, two maximum a posteriori (MAP) prediction methods are developed. The first method pred...

متن کامل

Predicting Formant Frequencies from MFCC Vectors

This work proposes a novel method of predicting formant frequencies from a stream of mel-frequency cepstral coefficients (MFCC) feature vectors. Prediction is based on modelling the joint density of MFCCs and formant frequencies using a Gaussian mixture model (GMM). Using this GMM and an input MFCC vector, two maximum a posteriori (MAP) prediction methods are developed. The first method predict...

متن کامل

Formant frequency prediction from MFCC vectors in noisy environments

This paper proposes a method of predicting the formant frequencies of a frame of speech from its mel-frequency cepstral coefficient (MFCC) representation. Prediction is achieved through the creation of a Gaussian mixture model (GMM) which models the joint density of formant frequencies and MFCCs. Using this GMM and an input MFCC vector, a maximum a posteriori (MAP) prediction of the formant fre...

متن کامل

Adaptation of children's speech with limited data based on formant-like peak alignment

Automatic recognition of children s speech using acoustic models trained by adults results in poor performance due to differences in speech acoustics. These acoustical differences are a consequence of children having shorter vocal tracts and smaller vocal cords than adults. Hence, speaker adaptation needs to be performed. However, in real-world applications, the amount of adaptation data availa...

متن کامل

HMM-based MAP Prediction o Formant Frequencies from N

This paper describes how formant frequencies of voiced and unvoiced speech can be predicted from mel-frequency cepstral coefficients (MFCC) vectors using maximum a posteriori (MAP) estimation within a hidden Markov model (HMM) framework. Gaussian mixture models (GMMs) are used to model the local joint density of MFCCs and formant frequencies. More localised prediction is achieved by modelling s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013